YEAST STRAINS AND THEIR EFFECTS DURING FERMENTATION

Darren Michaels
Fermentation Outside Technical
darrenm@scottlab.com

OUTLINE

- Examine the yeast associated with the winemaking process
- General overview of the compounds they can produce that can help drive wine style
- Known factors that influence yeast involved

GENERAL COMPOSITION OF WINE

YEAST DIVERSITY DURING FERMENTATION

Rising alcohol concentration during wine fermentation Different phases during spontaneous fermentation 10% alcohol Saccharomyces Brettanomyces latter stages 3-4% alcohol 3-4% alcohol Torulaspora_ Metschnikowia Schizosaccharomyces Pichia_ Zvoosaccharomyces Brettanomyces Brettanomyces Saccharomyces Saccharomyces 0-3% alcohol 0-3% alcohol 0-3% alcohol Lachancea Torulaspora Kloeckera Metschnikowia Hanseniaspora Schizosaccharomyces Pichia Candida Zygosaccharomyces Brettanomyces Brettanomyces Brettanomyces Saccharomyces Saccharomyces Saccharomyces Early stages

TORULASPORA DELBRUECKII

Interesting in:

- Aromatic whites, late harvest wines
- Metabolites of interest
 - Linalool (sweet-floral)
 - Succinic acids (sweet-bitter)
 - Enhanced esters
- Additional points
 - Osmotolerant
 - Low production of negative compounds (VA, Sulfides, Vinyl Phenols)

METSCHNIKOWIA SPP.

• Interesting in:

- Pre-fermentation maceration biocontrol
- Aromatic whites and roses due to enzyme activity

Metabolites of interest

- Release of glycosylated terpenes (fruity aromas)
- Release of volatile thiols
- Varietal aromas
- Esters (esp. pear)
- Polysaccharides to build volume

Additional points

- No/ low fermentative capacity
- Can be incompatible with Saccharomyces

PICHIA KLUYVERI

- Interesting in:
 - Aromatic whites , reds and roses
- Metabolites of interest
 - Release of volatile thiols
- Additional points
 - Must have a compatible Saccharomyces strain

NON-SACCHAROMYCES

- Can produce a range of flavor compounds
 - Terpenes
 - Esters
 - Higher alcohols
 - Glycerol
 - Acetaldehyde
 - Acetic Acid
 - Succinic Acid
- Must consider organism compatibility

The enological yeast of choice!

SACCHAROMYCES CEREVISIAE

FERMENTATION GOALS

Goal

- Sugar to Ethanol + CO₂
- Sugar to Ethanol + CO₂ with no sensory deviations
- Sugar to Ethanol + CO₂ with an influence on:
 - Aromatic production and enhancement
 - Mouthfeel
 - Stability
 - Acid chemistry

S. CEREVISIAEINFLUENCE ON SENSORY PROFILE

VOLATILE THIOLS

- Sulfur based compounds
- Located in the skin
- Aromatic whites and reds
- Need to be elaborated from their odorless form

TROPICAL VARIETAL THIOLS

Rémi Guerin-Schneider (IFV), 2012

YEAST STRAIN INFLUENCE- SAUVIGNON BLANC

4MMP

- Sensory threshold 3ng/L
- Boxwood, passion fruit, blackcurrant

3MH

- Sensory threshold 60ng/L
- Passion fruit, grapefruit

3MHA

- Sensory threshold 4ng/L
- Passion fruit, boxwood, sweaty

Swiegers, J.H., Francis, I.L., Herderich, M.J. and Pretorius, I.S. Meeting Consumer Expectations Through Management in Vineyard and Winery: The Choice of Yeast for Fermentation Offers Great Potential to Adjust the Aroma of Sauvignon Blanc Wine. Australian and New Zealand Wine Industry Journal 21:34-42 (2006).

YEAST STRAIN INFLUENCE-CHARDONNAY

- 2008 Margaret River Chardonnay
 - 12.7 Baume (~23brix)
 - pH 3.4
 - TA 7.0g/L
 - Ferm temp. 60-65°F
- Interesting that these compounds are demonstrated in cool climate Chd.
- Compounds can be reduced by O2 => Protect, protect, protect!!!

THIOL PRECURSORS AND THE INFLUENCE OF YEAST NUTRITION

S. CEREVISIAEINFLUENCE ON FUSEL ALCOHOLS

A.K.A. Higher alcohols or, aliphatic and aromatic alcohols

- Compounds with more than 2C units
- Produced via a series of reactions
 - Ehrlich pathway
 - Sugar metabolism
- Can have a positive, negative or effect
 - >400ppm = pungent, solvent
 - <300ppm = fruity

S. CEREVISIAEINFLUENCE ON FUSEL ALCOHOLS

 The amount of higher alcohols produced depends on:

- Grape
 - Cultivar, maturity, skin contact
- Microbial interactions
 - Yeast strains, yeast growth
- Matrix considerations
 - pH, temperature, amino acid concentration, level of solids
- Subsequent interactions and reactions
 - Higher alcohols are precursors for esters!

S. CEREVISIAE-INFLUENCE ON ESTERS

- Ester are volatile molecules
 - Fruity and floral
- Formed via a reaction between an alcohol and an acid
 - Ethyl esters (of fatty acids)
 - Formed via ethanol and acid
 - E.g. Ethyl hexanoate (aniseed, apple), Ethyl octanoate (sour apple)
 - Acetate esters (of higher alcohols)
 - Formed via acetate (derivative of acetic acid) and ethanol
 - E.g. Isoamyl acetate (banana), Isobutyl acetate (fruity),
 Phenyl ethyl acetate (rose, honey), Ethyl acetate (solvent)
- Ester formed
 - Enzymatic esterification during fermentation
 - Chemical esterification during storage

S. CEREVISIAE- INFLUENCE ON ESTERS

- 2008 Margaret River Chardonnay
 - 12.7 Baume (~23brix)
 - pH 3.4
 - TA 7.0g/L
 - Ferm. temp. 60-65°F

- Σ Acetate esters
- Σ Ethyl esters
- Σ Higher alcohols
- Σ Volatile acids

ESTER FORMATION

- Influenced by:
 - Concentration of substrates acetyl-CoA and fusel alcohol
 - Enzymatic activity
- Influenced by fermentation variables
 - Yeast strain
 - Composition of fermentation medium and conditions
 - Sugar concentration,
 Nitrogen composition => positive influence
 - High level of lipids => negative influence

- □ NEW INFORMATON!
- 2 phases of linear synthesis in function of the sugar consumption
- Yield of production of the 2nd phase always higher

NITROGEN & LIPID INFLUENCE ON ESTER BIOSYNTHESIS

- Low Nitrogen level
 - 70ppm
- 2 yeast strains
- 2 lipid levels
 - -2mg/L = ~60ntu's
 - -8mg/L = 240ntu's

In LOW YAN: whatever the lipids & yeast:

- ⇒ No difference on esters production
- ⇒ Low esters synthesis

NITROGEN & LIPID INFLUENCE ON ESTER BIOSYNTHESIS

- High Nitrogen
 - 300ppm
- 2 yeast strains
- 2 lipid levels
 - $-2mg/L = ^60ntu's$
 - -8mg/L = 240ntu's

- → Yeast
- ⇒ High impact on esters production:
- ⇒ High esters synthesis with high nitrogen, modulated by [lipids]: 2mg/l lipids : esters overproduction
- ⇒ No loss of viability with 2 mg/l lipids (60 NTU)

S. CEREVISIAEINFLUENCE ON MONOTERPENES

- Free form
 - Linalool, Geraniol, Nerol,
 Citronellol
- Bound (Odorless) form
 - Hydrolyzed to release pleasant flavors
- Glycosidically bound form
 - Yeast enzymatic activity reveals aroma
 - Strain dependent
 - Fermentation conditions
 - Low pH, high ethanol, high sugar

S. CEREVISIAE-INFLUENCE ON MOUTHFEEL

Glycerol

- Non-volatile compound
- Contribution to mouthfeel
 - Sweetness and fullness
 - Sensory threshold of 5.2g/L wine
 - Does not contribute to viscosity (~25g/L)
- Cellular function
 - Combat osmotic stress
 - Maintain RedOX balance

S. CEREVISIAE-INFLUENCE ON MOUTHFEEL

- Range
 - -4-9g/L
- Depends on
 - Yeast strain
 - Fermentable sugar concentration
 - Beware of increased VA
 - YAN level and composition
 - Temperature
 - SO₂ level
 - >100ppm

S. CEREVISIAE-INFLUENCE ON MOUTHFEEL

- High sugar => higher glycerol
- Higher temperature => higher glycerol

S. CEREVISIAEINFLUENCE OF POLYSACCHARIDES

- Polysaccharides
 - Can be release during cell growth and during autolysis from yeast cell walls
 - A.K.A. Mannoproteins
 - Polymers of mannose & other branched monosaccharides that contain <30% peptides
- Availability
 - Depends on yeast strain
 - Lytic susceptibility of strain

- Proposed role in:
 - Stimulation of MLF
 - Increase color stability
 - Protection of color
 - Whites and roses (GSH)
 - Decreased of astringency
 - Protective effect
 - Protein and tartrate stability

GLUTATHIONE

- Glutathione
 - Available in grapes
 - Reduced form (GSH)
 - Oxidized form (GSSG)
 - GSH competes with wine thiols for o-quinones thereby protecting wine aromas
 - Available in yeast
 - Different levels

$$-0.1-1\%$$

S. CEREVISIAEINFLUENCE OF POLYSACCHARIDES

- Polysaccharides
 - Can be release during cell growth and during autolysis from yeast cell walls
 - A.K.A. Mannoproteins
 - Polymers of mannose & other branched monosaccharides that contain <30% peptides
- Availability
 - Depends on yeast strain
 - Lytic susceptibility of strain

- Proposed role in:
 - Stimulation of MLF
 - Increase color stability
 - Protection of color
 - Whites and roses (GSH)
 - Decreased of astringency
 - Protective effect
 - Protein and tartrate stability

INFLUENCE ON ACID CHEMISTRY

Change in perception (not actual chemistry)

- Decrease in titratable acid
 - Utilization of malic acid
 - Schizosaccharomyce pombe and S. cerevisiae
- Increase in titratable acid
 - Production of acetic acid => Not desirable
 - IONYS WF

INFLUENCE OF YEAST ON MALIC ACID CONCENTRATION

Schizosaccharomyces pombe

- Very tolerant to low pH
- Not tolerant to ethanol
- Temperature influence
 - At 72F depletion is ~0.42g/L/day
 - At 50F depletion is 0.17g/L/day
 - Depletion slows once malic acid <2g/L

Malo-Ethanol Fermentation

2.33g/L malic acid => 0.1% Ethanol

MALATE ASSIMILATION BY SACCHAROMYCES

Sensu stricto

```
    S. bayanus, S. uvarum
    S. pastorianus
    S. pastorianus
    S. pastorianus
```

- S. cerevisiae, S. paradoxus =>thermotolerant T_{opt} 30°C
- Cold tolerant species => synthesize L-malic acid
- Thermotolerant => can degrade L-malic acid

% MALIC ACID DEGRADED IN CHARDONNAY

2007 Sterile Chardonnay Juice, 240g/L G:F, 18°C pH ??? Fermentations carried out in triplicate

MALIC ACID DEGRADATION BY S. CEREVISIAE

	F. GRIS	LA CRESENT	FRONTENAC ROSE	MARQUETTE ROSE
INITIAL MALIC ACID	5.1 g/L	5.3g/L	4.6g/L	4.1g/L
% MALIC ACID DEGRADATION				
DV10	16	9		
LALVIN C	31		34	27
EXOTIC S		19	30	20
OPALE		11		
GRE			26	18

- Genetic variability
- Phenotypic considerations
 - pH influence
 - Optimum at pH 3.0-3.5
 - Increases at end of fermentation

INACTIVATED YEAST...

A WORD ON YEAST SPOILAGE

- Not all yeast contribute positive notes
 - Non-Saccharomyces
 - Elevated ethyl acetate and acetic acid
 - Saccharomyces (when stressed)
 - Elevated Acetaldehyde, Acetic Acid, Sulfides
 - Brettanomyces
 - 4-ep, 4-eg, Isovaleric acid

TAKE HOME MESSAGE

- Biodiverity in the winemaking environment is astounding
 - Not every strain, or their attributes are suitable for your winemaking style
 - Yeast need your help to drive certain characteristics
 - They are amazing, but they are not infallible
- Microbes can and will drive style, but you need to have a style to drive towards!

THANK YOU!

QUESTIONS?

DARREN MICHAELS
FERMENTATION OUTSIDE TECHNICAL
DARRENM@SCOTTLAB.COM