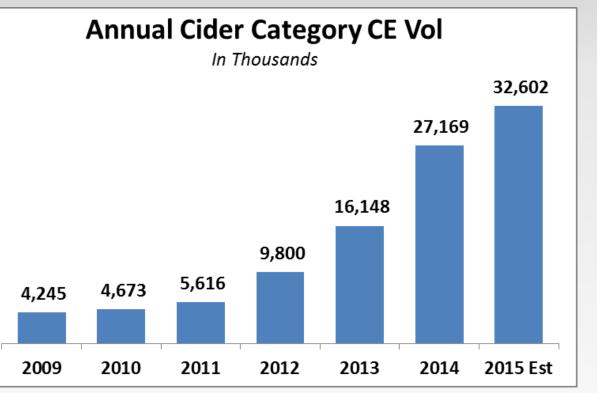
Constraints and Opportunities in Growing Apples for the Cider Market

DR. TERENCE BRADSHAW UNIVERSITY OF VERMONT

MONTANA GRAPE AND WINE ASSOCIATION 5^{TH} ANNUAL MEETING HELENA. MT MARCH 22, 2019



U.S Cider Sales Increasing since 2011

•Substantial increase in cider category around 2012-2014 attracted attention

•Questions:

- Is this growth sustainable?
- How can the apple industry respond to this market increase?

Source: Beer Institute, TTB and Commerce Department 2014. 2015 - BBC Projections

2014-2016: Vermont Working Lands Enterprise Initiative Apple Market Optimization and Expansion through Value-Added Hard Cider Production

- •Quantify production costs for apples managed specifically for hard cider production
- Identify fruit quality and yield characteristics of apple cultivars suited for hard cider production
- •Coordinate fermentation trials and evaluate finished ciders made from Vermont apple cultivars

Dan Rowell, CEO VT Hard Cider Company (left) and Dr. David Conner, UVM CDAE Dept. Photo: VT Working Lands Enterprise Initiative

VERMONT HARD CIDER COMPANY

2014-2016: USDA Federal State Marketing Improvement Program Orchard Economic Assessment to Support Vermont Hard Cider Production

- Assist in the development of more efficient marketing methods, practices and facilities to bring about more efficient and orderly marketing of cider apples, and reduce the price spread between growers and cideries
- Quantify the economic impact of hard cider and cider apple production on rural Vermont economies.

Terence Bradshaw collects orchard yield data at Sunrise Orchards, Cornwall, VT. Photo: T. Bradshaw

VERMONT HARD CIDER COMPANY

Production and Prospects in Vermont

•Growth of industry is seen as an opportunity for apple growers and cider makers

•But...

- Adequate apple price is a threat for growers
- Adequate fruit supply is a threat for cider makers

Becot, F. A., T. L. Bradshaw and D. S. Conner (2016). "Apple Market Optimization and Expansion through Value-Added Hard Cider Production "<u>HortTechnology</u> <u>26(2): 220-229.</u>

Two worlds of cider apple production

•<u>Dessert fruit from</u> existing/future plantings

- What are the qualities of dessert fruit from a <u>cidermaking</u> perspective?
- What strategies can be adopted to reduce costs of production/increase supply/improve cider quality?

Two worlds of cider apple production

•Specialty cider cultivars

- Heirloom
- Low-input scab-resistant cultivars
- Regionally-unique cultivars
- Bittersweet cultivars
- How do these cultivars perform in Vermont orchards?
- What management strategies can increase supply/profitability/cider quality?

What the Cider Makers Want

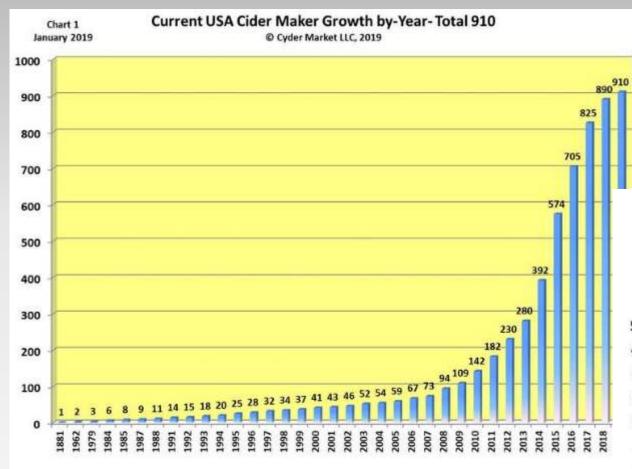
Dessert	Dual-Purpose	Specialty cider
Cortland (1)	Ashmeads Kernel (4)	Ashton Bitter (1)
McIntosh (1)	Calville Blanc (1)	Bittersweet (1)
Organic empire (1)	Cox's Orange Pippin (1)	Chisel Jersey (1)
Pinova (1)	Esopus Spitzenberg (4)	Dabinett (4)
	Golden Russet (4)	Ellis Bitter (2)
	Liberty (1)	Foxwhelp (1)
	Lodi (1)	Kingston Black (5)
	Northern Spy (3)	Major (1)
	Roxbury Russet (1)	Orleans Reinette (1)
		Reine des Reinnette (1)
		Somerset Redstreak (1)
Becot, F. A., T. L. Bradshaw and	1 D. S. Conner (2016).	Stoke Red (1)
"Apple Market Optimization and Value-Added Hard Cider Produc		Wickson (4)
<u>26(2): 220-229.</u>	<u>norreennotozy</u>	Yarlington Mill (2)

What Vermont orchards are growing

'McIntosh' family 81% **Red Delicious** Honeycrisp 'Desert cider'

6% 6% 7%

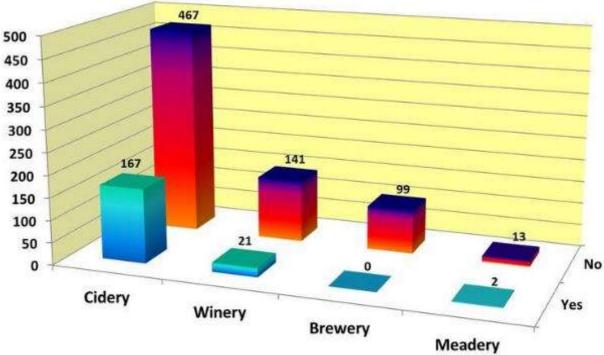
Vermont Apple Cultivar Acreage, 2011



McIntosh

- Jonamac
- Red Delicious
- Honeycrisp
- Golden Delicious
- Other
- Northern Spy
- Misc. Heritage var.
- Jonagold
- Liberty

VTFGA (2011). Vermont Tree Fruit Growers Association Apple Industry Survey Report. http://www.uvm.edu/~orchard/2011VT_Apple_Survey_Results.pdf.



AGRICULTURE & LIFE SCIENCES

Continuing trends

Current USA Cider Makers Using "Heirloom" Apples by Type- Total 910 © Cyder Market, LLC 2019

Chart 15 January 2019

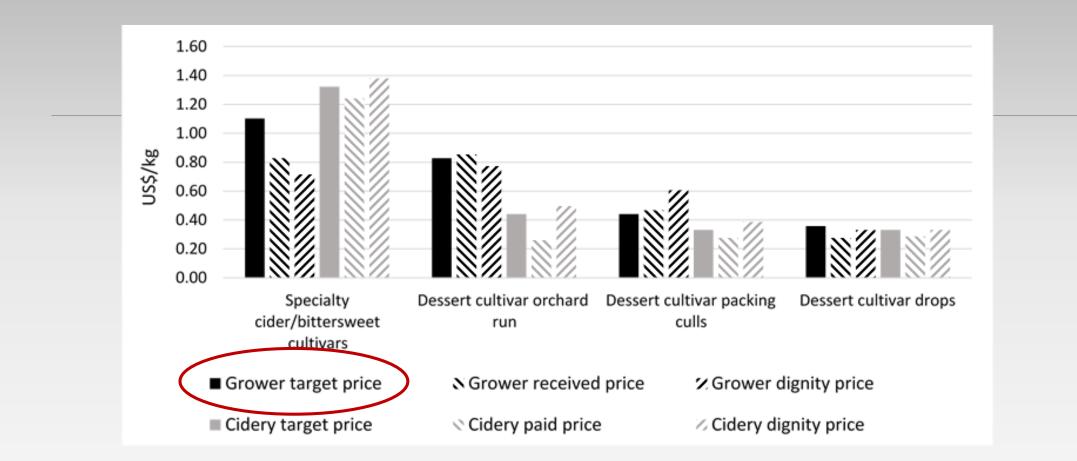


Figure 1. Median prices received and paid for apples to be used in cider production (growers: n = 9 and cideries: n = 5)

Becot, F. A., T. L. Bradshaw and D. S. Conner (2016). "Apple Market Optimization and Expansion through Value-Added Hard Cider Production " HortTechnology **26**(2): 220-229.

2015-16 "Kitchen Table" Surveys

Small scale orchards:

- 11.5 productive acres
- 2015 mean yield 341 bushels per acre
- Large scale orchards
- 167.5 productive acres 2015 mean yield 650 bushels per acre.

Generated real cost data for modeling

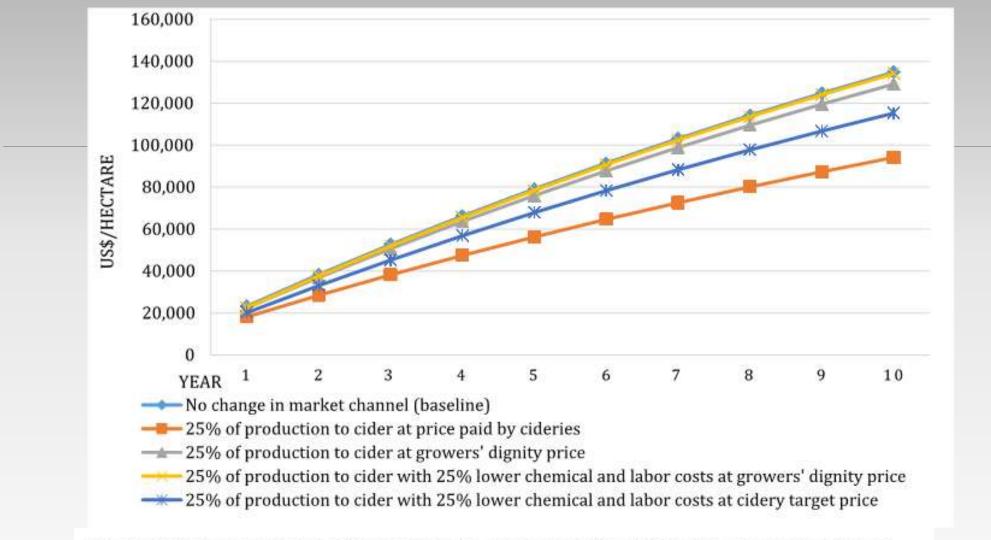
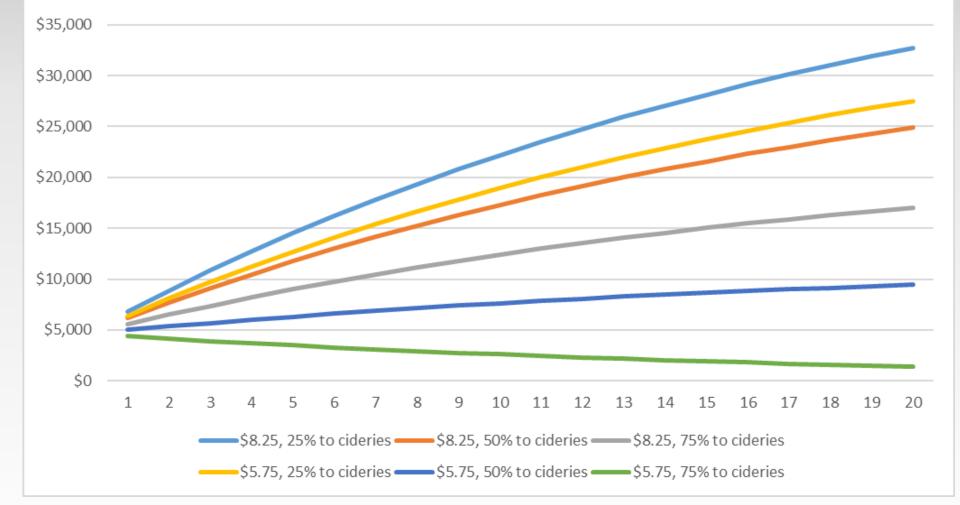
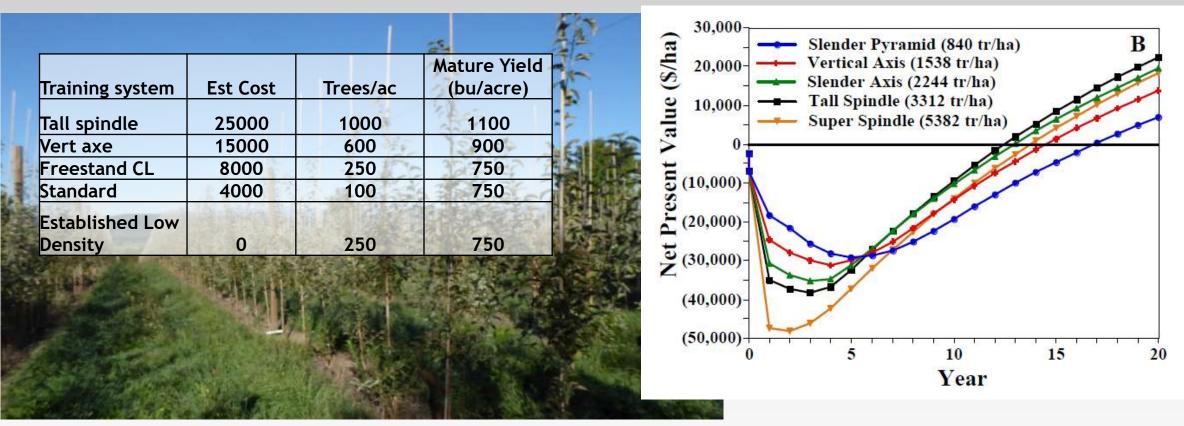
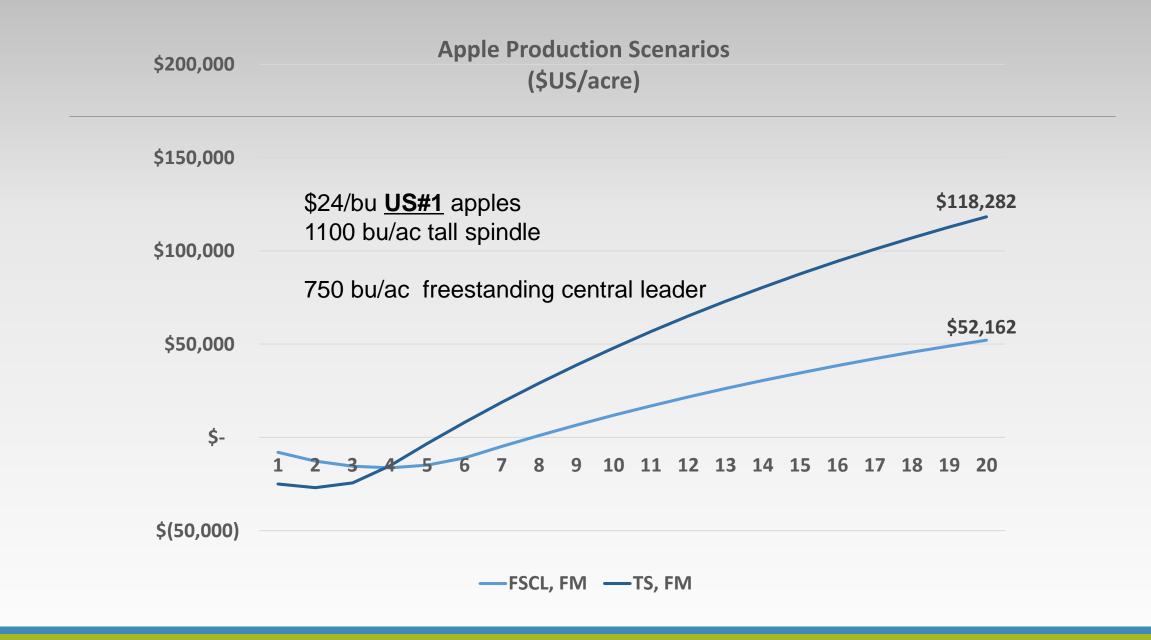



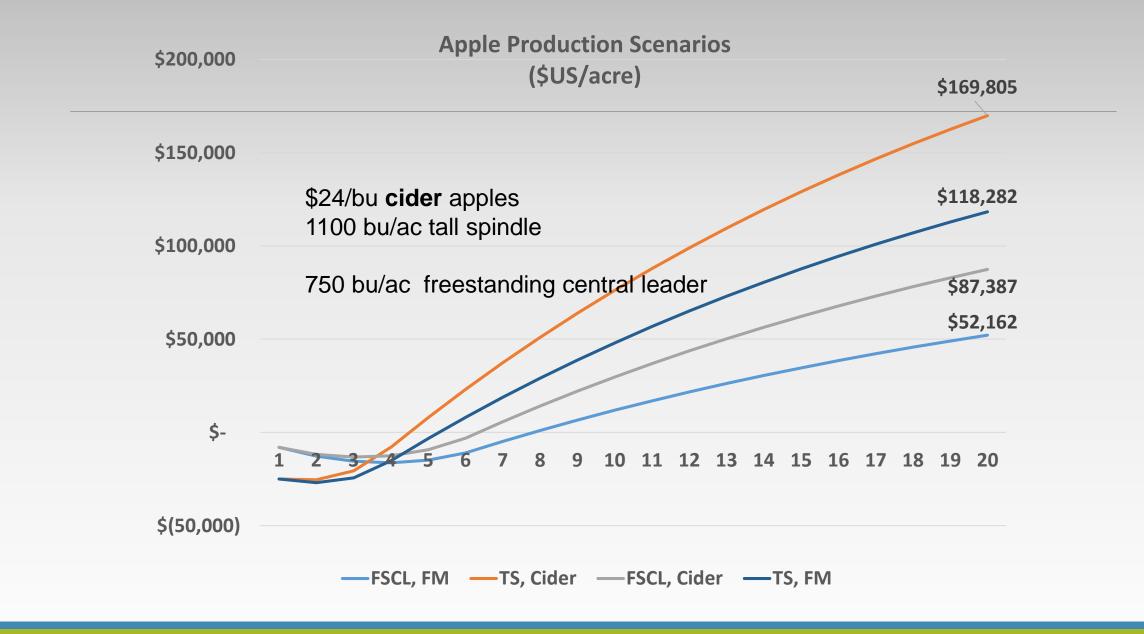
Figure 2. Net present value for small scale orchard selling 25% of the dessert cultivar orchard run production to cider under various price and management scenarios.

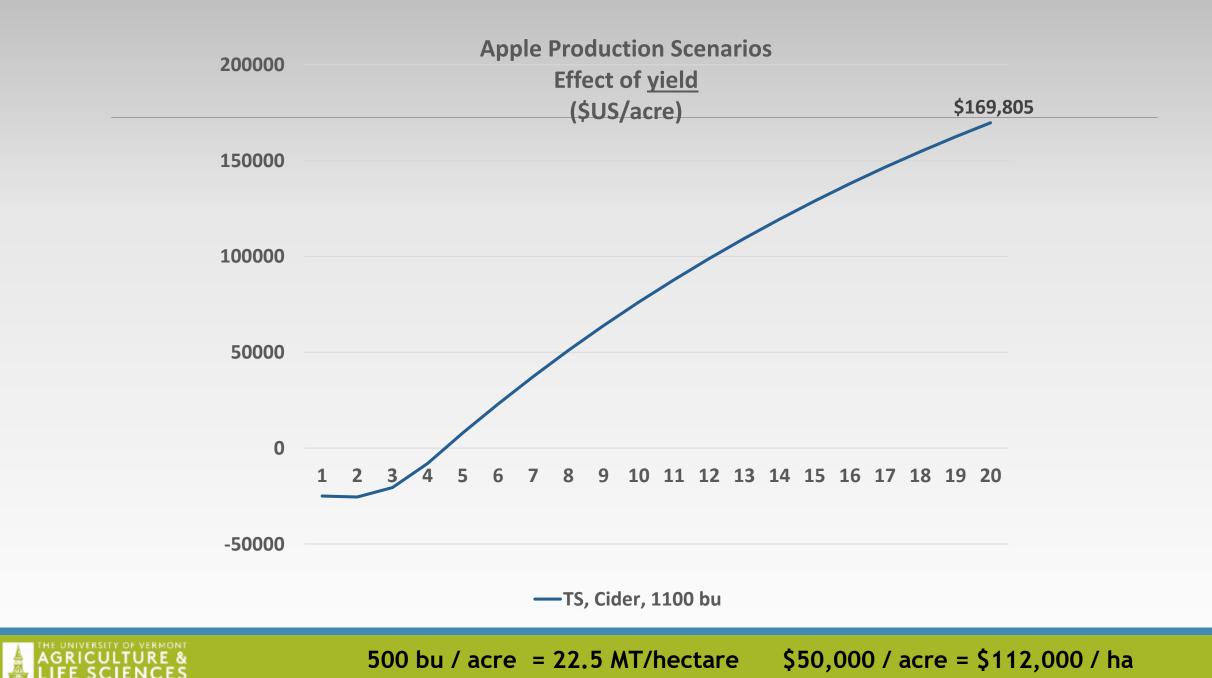

Becot, F.A., Bradshaw, T.L., and Conner, D.S., 2016. Growing apples for the cider industry in the U.S. Northern Climate of Vermont: Does the math add up? *Acta Hort*. In press.

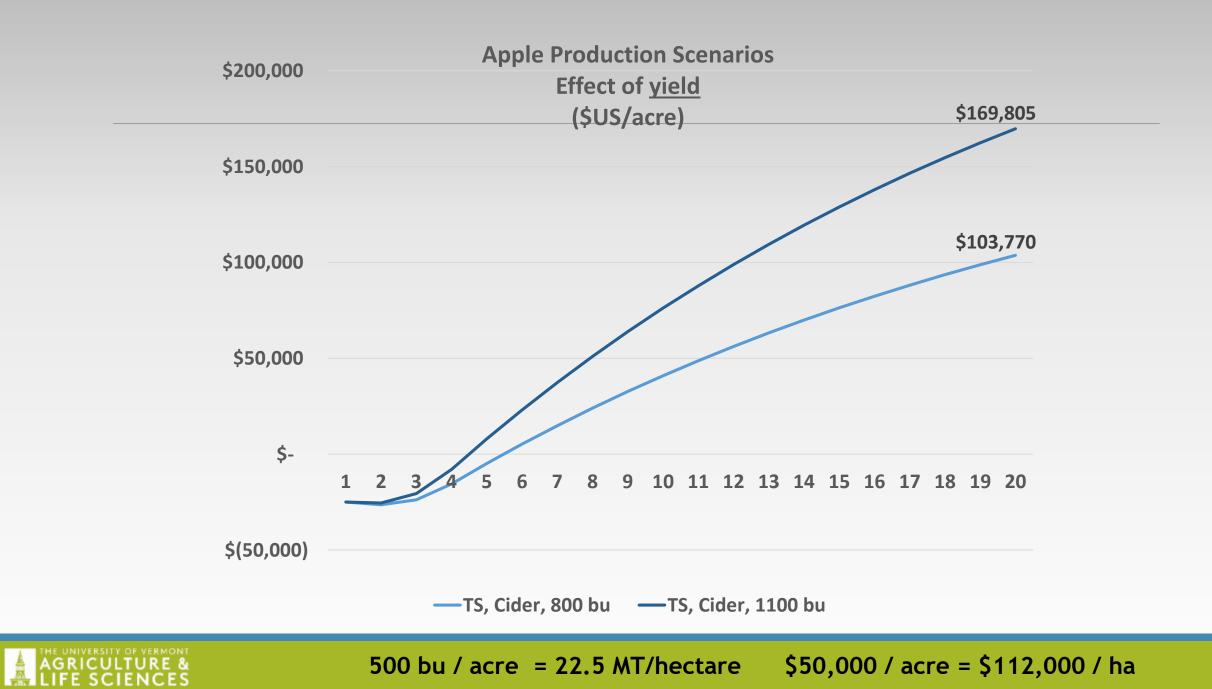
Net Present Value for established orchards: change in prices and percent of production going to cider market

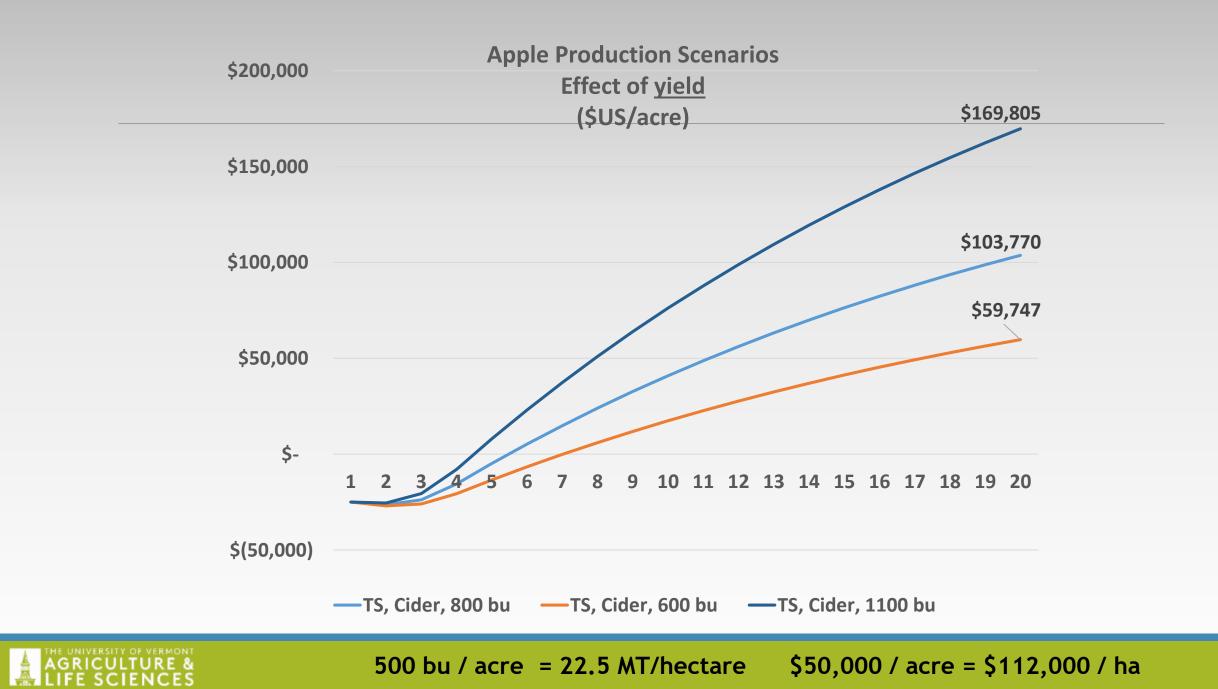


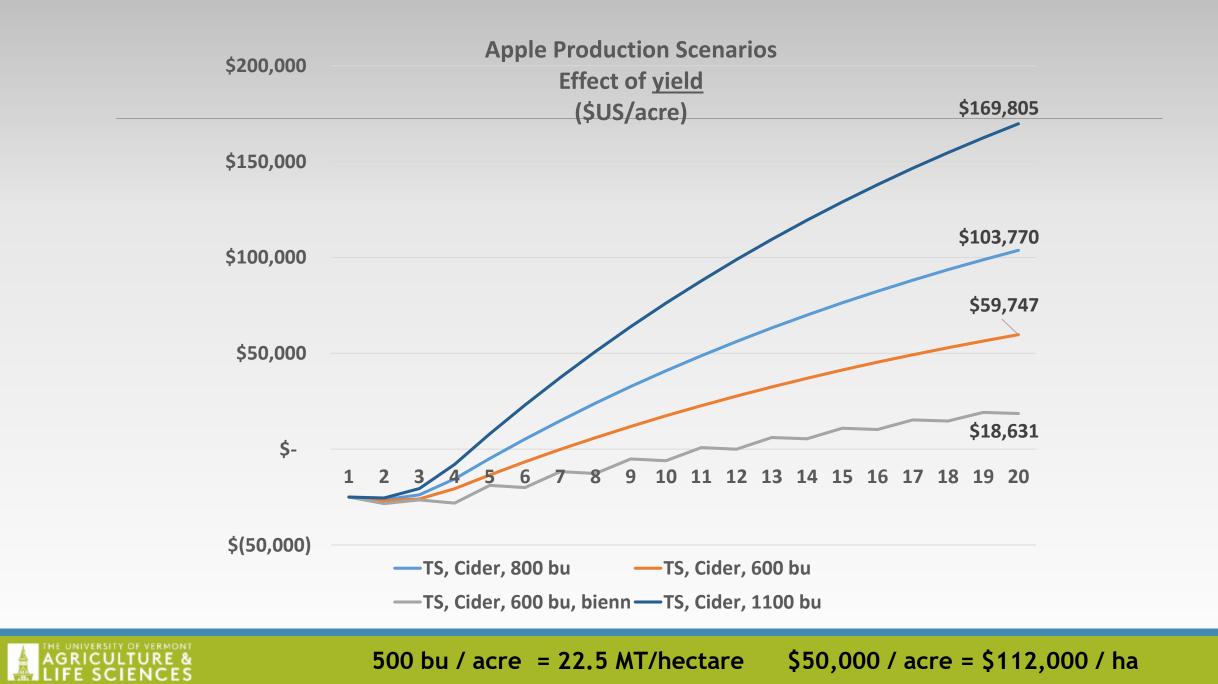
New orchard establishment

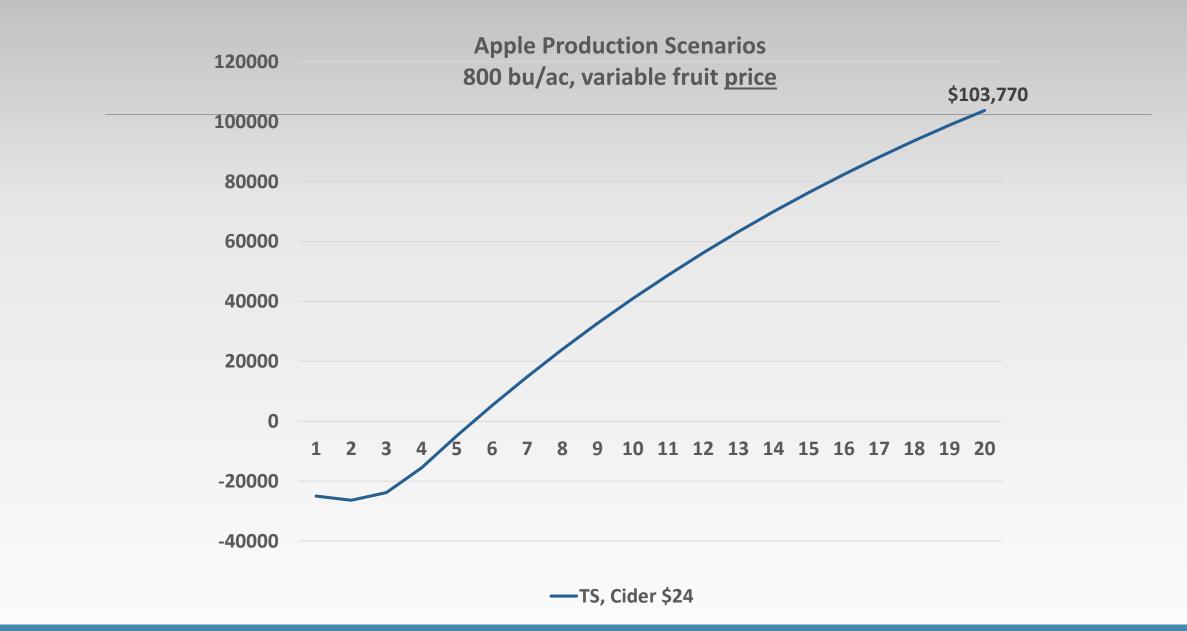


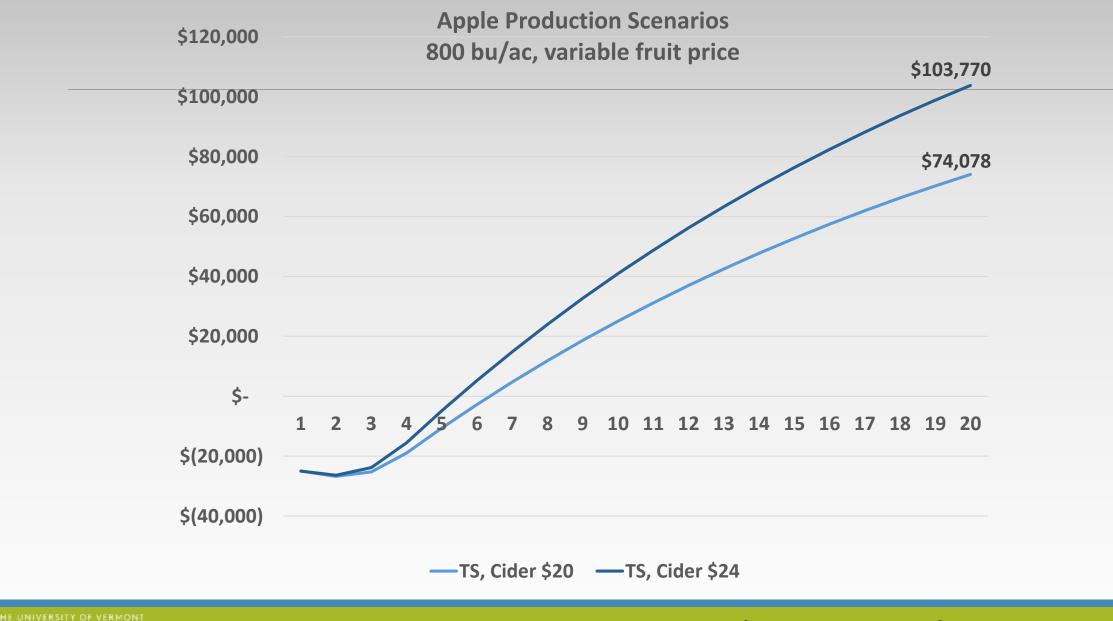

Robinson, T., A. DeMarree and S. Hoying (2007). "An economic comparison of five high density apple planting systems." Acta Hort 732: 481-489.

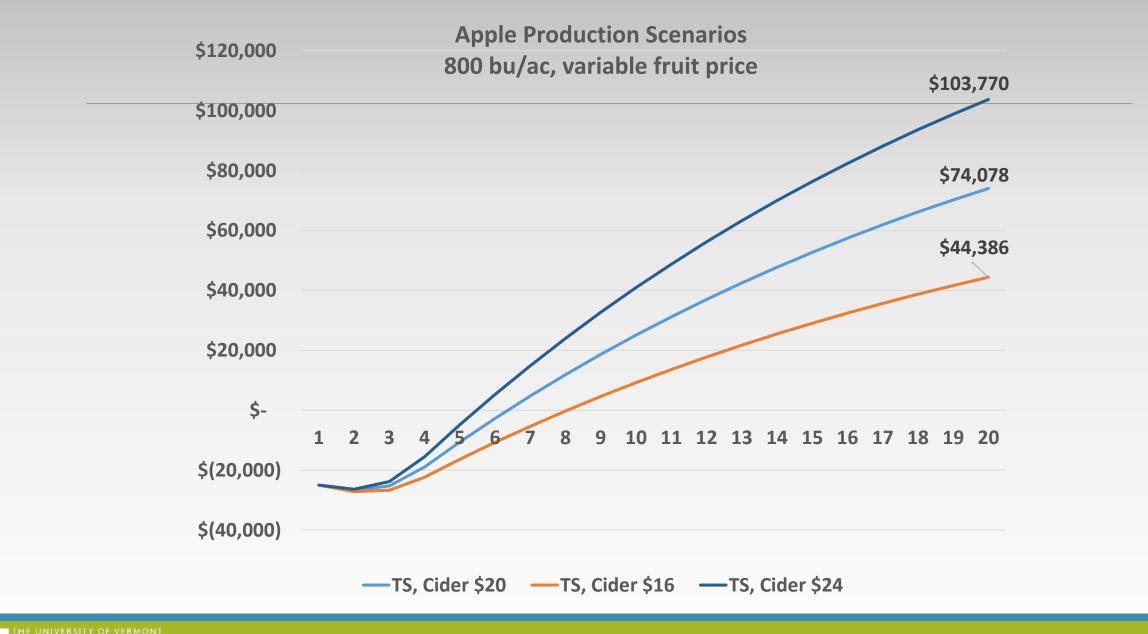


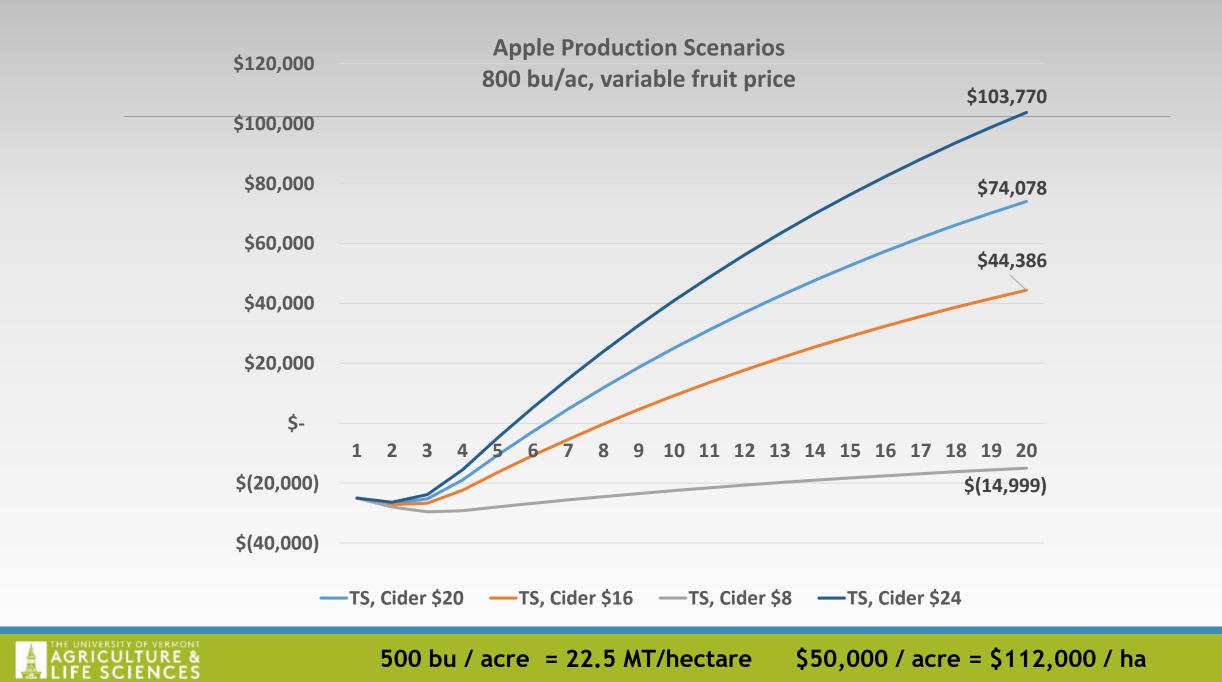


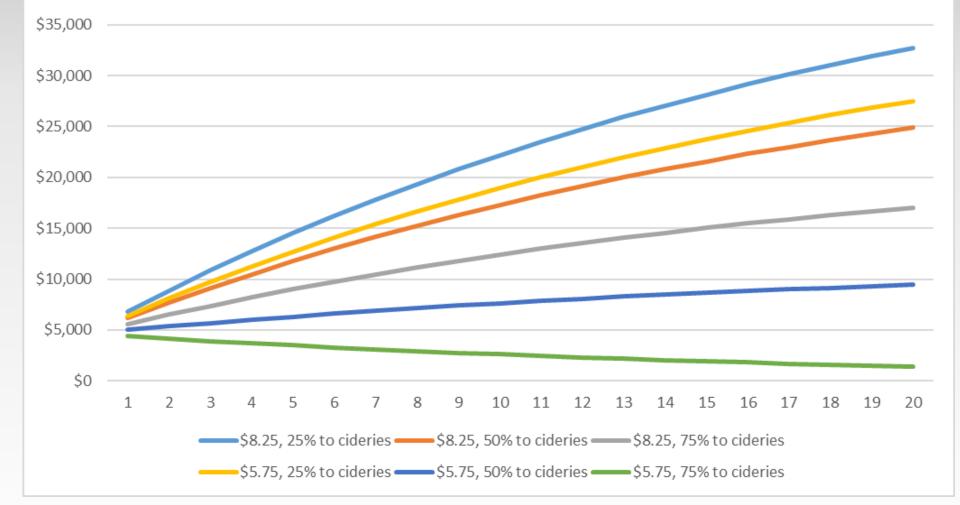

AGRICULTURE &











Net Present Value for established orchards: change in prices and percent of production going to cider market

Take home (for apple growers):

- •Lose the rose-colored glasses
- •Realistic and attainable yield
- •Plan for lost years
- •Plan for biennialism
- •Get the price you need •Make a deal

2014-2016: Cider Apple Cultivar Evaluation

Characterize crop yield and juice quality of cider apples either presently or potentially grown in VT

•Field-measurements

•Lab-analysis

•Sensory analysis

Table 2. Juice analysis and hedonic evaluation scores for cider apples evaluated in 2014. Parameters include: soluble solids (SS), pH, titratable acidity (TA), total polyphenols (tannin), yeast assimilable nitrogen (YAN), and subjective cider evaluation criteria (Mitchell, 2009).

Cloud	Cultivar	Appearanc	10.00		C		0 - 1 - 1 i a		. A the for a		Flores	
Class ²		e	Arom		Sweetnes	SS	Acidity		Mouthfee		Flavor	
Sharp	Ashmead's Kernel	3.67 *×	3.47	*	2.63		2.97		3.03		3.17	
Sharp	Esopus Spitzenburg	2.61	3.00		2.57		2.84		2.84		2.69	
Sharp	Idared	2.59	2.98		2.85		2.88		2.78		2.82	
Sharp	Jonagold	3.21	2.82		2.73		2.97		2.92		2.86	
Sharp	Liberty	3.34	2.97		2.75		2.87		2.79		2.72	
Sharp	McIntosh	2.96	2.84		2.71		2.95		2.74		2.82	
Sharp	Topaz	3.13	2.90		2.35		2.69	Π	2.54		2.41	
Sharp	Wickson	3.10	2.65		2.36		2.78	Π	2.72		2.78	
Sweet	Cortland	3.27 *	2.65	*	2.63		2.93	*	2.68	*	2.46	
Sweet	Honeycrisp	3.25	3.02		2.73		2.98		3.00		2.79	
Sweet	Macoun	3.24	2.30		2.47		2.57		2.61		2.43	
Sweet	Paulared	3.79	3.07		2.40		2.79		2.77		2.67	
Bittersweet	BS Blend ^w	3.90	2.84	1	2.76	1	2.94	*	3.19		3.13	*
Bittersweet	Dabinett	3.81	3.19		2.59		2.55		3.00		2.39	
Blend	1	3.28 *	3.14		3.45	*	3.21		3.34		3.34	*
Blend	2	2.53	2.77	(2.72		2.79		2.93		2.77	
Blend	3	3.20	3.03		3.10		3.14		3.23		3.03	
	ed on Lea's (2015) classifications and r asured in malic acid equivalents, total					ded an	d adjusted cid	ers a	available or intend	ed for	retail sale.	
*Cider quality paramet	ers within each class highlighted with components in blended ciders where 1	* indicate differe	nces observed	dbetw	een ciders at α=0	0.05 us	ing non-parar	netr	ic chi-square test. I	Parame	eters were rate	d 1-
	cultivars of European origin collected	from non-comme	rcial orchard.									

^v Juice chemistry not conducted on blended ciders prior to fermentation.

Juice analysis including soluble solids (SS), pH, titratable acidity (TA), total polyphenols (Tannins), and yeast assimilable nitrogen (YAN) for three lots of cider apples evaluated in 2015.

Cultivar	Lot ^z	SS (°brix)	рН	TA	Tannins	YAN
			•	(g/l) ^y	(mg /l) ^y	(mg/l)
Ashmead's Kernel	1	18a ^x	3d	10.8a	667c	166.3a
Brown Snout	1	18.2a	3.8c	4.1d	2148b	97.4bc
Calville Blanc	1	15.3b	3.1d	10ab	728c	86.3cd
Chisel Jersey	1	13.1bc	4.1b	1.5e	2408b	55.4d
Dabinett	1	13.1bc	4.2ab	1.1e	3656a	31.8de
Esopus Spitzenburg	1	15.8ab	3.1d	9.3b	633c	112.7b
Harry Master's Jersey	1	12c	4.3a	1.2e	2120b	36.7cd
Redfield	1	13.6bc	3.2d	6.5c	3268a	58.6c
Yarlington Mill	1	12.2c	3.8c	1.7e	3538a	8.9e
-		ected from one orchard in Addise llected from Franklin and Washir		tes (n=5) collected from one orc	hard in Chittenden County, VT; lot	3 = single samples (n=1) of
			henols measures in gallic acid eq		sh lat da nat diffar at a=0.05 using	Tulanda adinaturant fan multinla

* Values represent mean for of all replicated for lots 1 & 2, and single values for lot 3. Values followed by the same letter within each lot do not differ at α=0.05 using Tukey's adjustment for multiple comparisons.

Juice analysis including soluble solids (SS), pH, titratable acidity (TA), total polyphenols (Tannins), and yeast assimilable nitrogen (YAN) for three lots of cider apples evaluated in 2015.

Cultivar	Lot ^z	SS (°	brix)	р	Н		A /I) ^y		nins ; /l) ^y		AN g/l)
Crimson Crisp	2	14.2	ab	3.4	b	8.3	b	1089	а	137.2	b
Crimson Gold	2	13.8	ab	3.4	b	7.9	bc	702	ab	97.1	bc
Crimson Topaz	2	14	ab	3.2	С	12.1	а	617	ab	167.5	ab
Florina Querina	2	14.1	ab	3.5	ab	6.3	с	556	ab	131.8	b
Galarina	2	14.9	ab	3.5	b	8.7	bc	668	ab	234.5	а
Liberty	2	13	b	3.2	bc	8.5	bc	1049	а	117.4	b
Williams Pride	2	10.3	b	3.4	b	5.5	с	439	b	56.2	С
Winecrisp	2	16.2	а	3.6	а	6.1	С	595	ab	68.8	bc
promising wild apple	² Lot 1 = fruit replicates (n=5) collected from one orchard in Addison County, VT; lot 2 = fruit replicates (n=5) collected from one orchard in Chittenden County, VT; lot 3 = single samples (n=1) of promising wild apple cultivars collected from Franklin and Washington Counties, VT.										

^x Values represent mean for of all replicated for lots 1 & 2, and single values for lot 3. Values followed by the same letter within each lot do not differ at α=0.05 using Tukey's adjustment for multiple comparisons.

Juice analysis including soluble solids (SS), pH, titratable acidity (TA), total polyphenols (Tannins), and yeast assimilable nitrogen (YAN) for three lots of cider apples evaluated in 2015.

Cultivar	Lot ^z	SS (°	brix)	р	Н		A /I) ^y	Tannins (mg /l) ^y		YA m٤)	
Franklin Cider Apple	3	16.9		2.8		7.8		3557		28.4	
MC1	3	9.3		2.9		9		2236		26.7	
MC2	3	11.2		3.3		4.2		1215		18	
MC6	3	15.1		4.4		1.6		1884		41.1	
MC7	3	11.3		3.1		8.7		2335		27	
MC8	3	13.3		3.2		10.5		1801		39.7	
NC1	3	12.9		4.4		1.4		2367		34.6	
NC2	3	14.2		3.3		5.8		1151		74.2	

² Lot 1 = fruit replicates (n=5) collected from one orchard in Addison County, VT; lot 2 = fruit replicates (n=5) collected from one orchard in Chittenden County, VT; lot 3 = single samples (n=1) of promising wild apple cultivars collected from Franklin and Washington Counties, VT.

^y Titratable acidity measured in malic acid equivalents, total polyphenols measures in gallic acid equivalents.

^x Values represent mean for of all replicated for lots 1 & 2, and single values for lot 3. Values followed by the same letter within each lot do not differ at α=0.05 using Tukey's adjustment for multiple comparisons.

How many "Cider Apples" do you need?

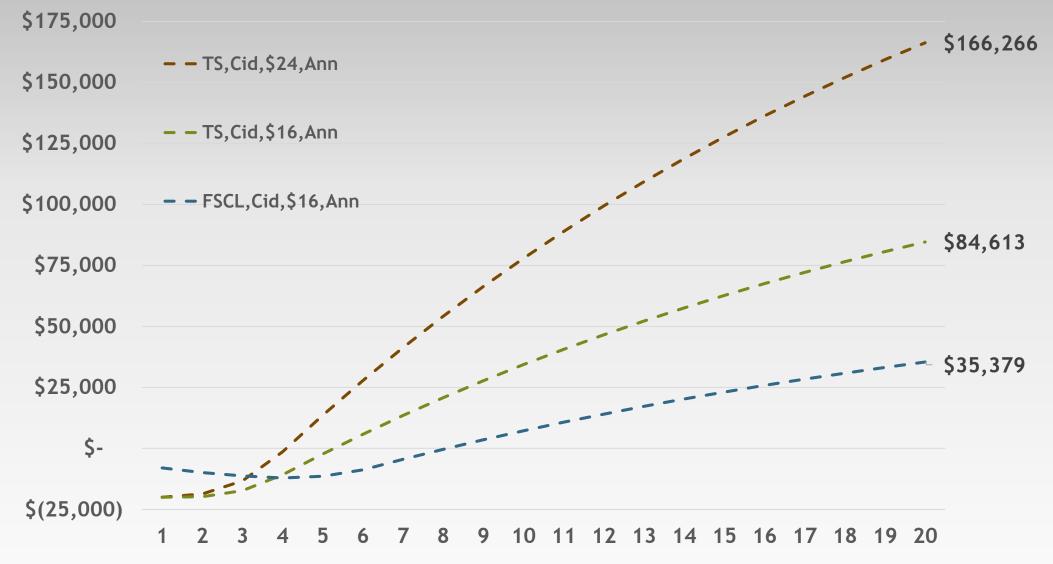
'Ideal' cider blend (Proulx and Nichols) • Neutral 30 - 60% • Cortland, Rome, G. Delicious, Baldwin • Tart 10 - 20% Jonathan, Liberty (fresh), Greening, Spy • Aromatic 10 - 20% Cox, Russetts, McIntosh • Astringent 5 - 10% Crabapples, Bittersweets

Specific Management Issues with High-Value Cider Apple Cultivars

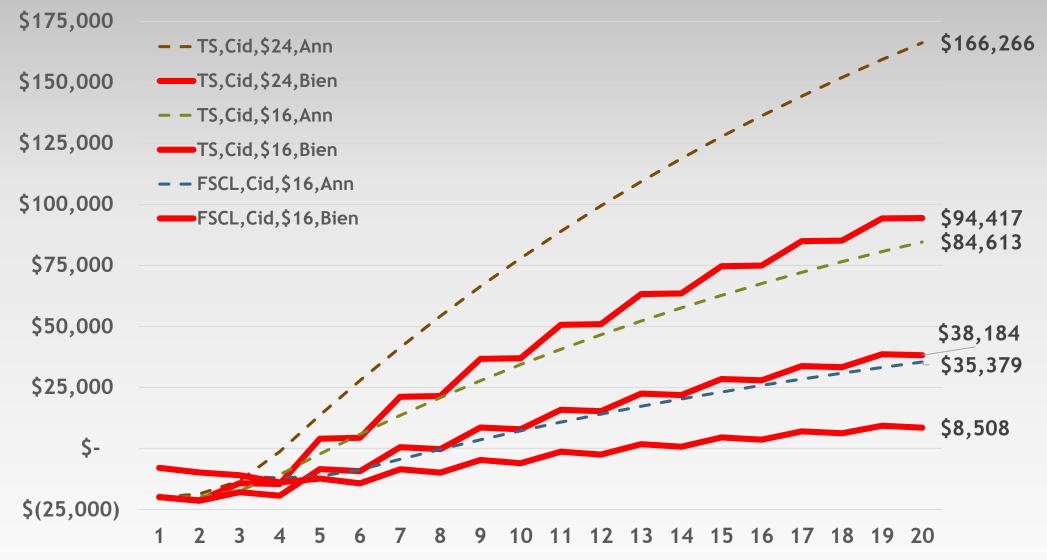
•Unknown/ unproven yield benchmarks

- •Orchard architecture is unsettled
 - Big or small trees?
 - Trellis or freestanding?
 - Mechanical harvest?

•<u>Unique Sensitivity to</u> <u>Disease and Horticultural Problems</u>


Specific Management Issues with High-Value Cider Apple Cultivars

- •Unknown/ unproven yield benchmarks
- •Orchard architecture is unsettled
 - Big or small trees?
 - Trellis or freestanding?
 - Mechanical harvest?
- Biennial production



NPV Projections for Cider Apple Production Systems

NPV Projections for Cider Apple Production Systems

Specific Management Issues with High-Value Cider Apple Cultivars

- •Unknown/ unproven yield benchmarks
- Orchard architecture is unsettled
 - Big or small trees?
 - Trellis or freestanding?
 - Mechanical harvest?

Biennial production

- Typically managed by:
 - Cultivar selection
 - Application of PGRs, including carbaryl
- European cider cultivars don't respond well to carbaryl
- Can newer return-bloom treatments reduce biennialism and avoid use of carbaryl?

On-Farm Plant Growth Regulator Trials for Crop Load Management

Commercial orchard in Addison County, VT

Two cultivars: 'Ellis Bitter', 'Kingston Black'

2011 planting; MM111/M9 interstock

Two years: 2016, 2017

Six treatments:

- 1. NTC
- 2. Carbaryl
- 3. NAA
- 4. Carbaryl + NAA
- 5. Ethrel
- 6. Carbaryl + Ethrel

Table 2. Crop yield and fruit quality for two cider apple cultivars and six plant growth regulator treatments.										
		Treatment ^z	No. fruit per tree	Kg fruit per tree	Fruit drop	Flesh firmness	Starch			
					% (kg/kg)	kg * cm ⁻²	index ^y			
	×	NTC	84.2	9.7	48.2	8.92	4.72			
	lac	Carb	87.2	11.2	48.2	8.76	5.20			
2016	Kingston Black	NAA	164.0	13.0	42.3	8.13	5.00			
20	sto	Carb+NAA	76.8	10.6	46.2	8.48	5.75			
	ing	Eth	76.3	10.3	50.6	8.44	5.95			
	\mathbf{X}	Carb+Eth	86.8	11.7	57.1	7.23	5.50			
		p-value ^x	0.1679	0.8042	0.5546	0.1153	0.1685			
	×	NTC	1.2 ab ^x w	0.06 ab	93.9	7.76	5.25			
	Kingston Black	Carb	0.3 b	0.03 ab	85.7	8.65	2.00			
2017	E E	NAA	0.8 ab	0.04 ab	66.8	9.93	5.42			
20	sto	Carb+NAA	0.5 b	0.03 ab	72.6	7.95	7.00			
	ing	Eth	5.8 a	0.22 a	91.0	8.91	6.03			
	×	Carb+Eth	0.0 b	0.00 b	_w	-	-			
		p-value	0.0210	0.0423	0.7130	0.1238	0.3572			

^z From table 1.

^y Relative starch index from Blanpied & Silsby,

× P-value for initial F-test at α =0.05. For p< 0.05, mean values for each treatment followed by the same letter do not differ using Tukey's adjustment for overall of multiple comparisons α =0.05.

* Missing data where harvest = 0.

Bradshaw, T. and Foster, J. 2018. Plant growth regulators affect biennial bearing of two cider apple cultivars in Vermont, U.S.A. Acta Horticulturae. Submitted July, 2018; accepted November, 2018. In Press.

Table 3. Crop yield and fruit quality for two cider apple cultivars and six plant growth regulator treatments.										
		Treatment ^z	No. fruit per tree	Kg fruit per tree	Fruit drop	Flesh	Starch			
					% (kg/kg)	firmness kg * cm ⁻²	index ^y			
		NTC	187.3 ab	15.0	35.3 ab	7.81 a	7.45			
	er	Carb	78.0 b	8.28	49.2 a	6.77 bc	7.24			
16	Bitter	NAA	215.0 a	17.64	29.7 b	7.23 ab	7.30			
201	Ellis F	Carb+NAA	95.5 ab	11.13	34.7 ab	6.43 bc	7.23			
	EII	Eth	116.5 ab	10.96	46.8 a	6.55 bc	7.51			
		Carb+Eth	102.0 ab	10.73	42.0 ab	6.17 c	7.55			
		p-value	0.0138	0.0988	0.0087	< 0.0001	0.2121			
		NTC	1.0	0.14	20.0	6.55	6.33			
	Bitter	Carb	24.5	2.22	27.0	5.90	6.79			
2017	Bitt	NAA	0.0	0.00	-	-	-			
20	Ellis I	Carb+NAA	12.0	1.87	17.0	5.92	7.37			
	EII	Eth	0.0	0.00	-	-	-			
		Carb+Eth	1.8	0.18	29.2	5.30	7.25			
7 Erom table 1		p-value	0.3889	0.2388	0.9137	0.4924	0.0839			

^z From table 1.

^y Relative starch index from Blanpied & Silsby,

× P-value for initial F-test at α =0.05. For p< 0.05, mean values for each treatment followed by the same letter do not differ using Tukey's adjustment for overall of multiple comparisons α =0.05.

w Missing data where harvest = 0.

Bradshaw, T. and Foster, J. 2018. Plant growth regulators affect biennial bearing of two cider apple cultivars in Vermont, U.S.A. Acta Horticulturae. Submitted July, 2018; accepted November, 2018. In Press.

Conclusions

- •Tree response to PGRS was cultivar-dependent
- •Neither cultivar saw a substantial reduction in biennial bearing
- •Some suggestion that 'Ellis Bitter' may be somewhat susceptible to carbaryl
- •Essentially no effect on juice quality
- •Farm more work needs to be done on multiple cultivars, mature trees, differing weather net carbohydrate conditions

Cider Orchard Research: Continued Work

•2018-2021 Hatch Project

"Rootstock and orchard architecture selection for unique apple production systems"

- •2019-2022- NECAP: New England Cider Apple Program
 - Continues IPM monitoring on cider apple cultivars across New England
 - Addresses biennial production via PGR, string thinning, and mechanical hedging
 - Coordinates research across New England states

•New Cider IPM section in New England Tree Fruit Management Guide

Latest Research...

"...the core issue preventing ciderspecific apple production in Vermont is on the *hard cider demand side*, *rather than on the apple supply side*" "...

This research project has **identified the** *establishment of a hard cider geographical identity as the most promising strategy* ...to tackle both cider-specific apple supply issues and hard cider demand challenges"

Journal of Food Research

HOME ARCHIVES ABOUT LOGI CURRENT ANNOUNCEMENTS RECRUITMENT EDITORIAL BOARD SUBMISSION COMPETING INTER STS STATEMEN ETHICAL GUIDELINES PUBLICATION FEE GOOGLE SCHOLAR CITATIONS CONTACT

Home > Vol 7, No 2 (2018) > Fabien-Ouellet

The Identity Crisis of Hard Cider

Nicolas Fabien-Ouellet, David Scott Conner

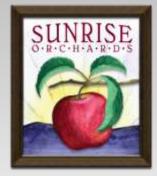
Abstract

In the past 5 years, the hard cider industry in the U.S. has undergone a sudden and dramatic growth period. This boom initially revealed challenges on the cider-specific apple supply side, but issues on the hard cider demand side have also emerged. This mixed methods study conducted in Vermont, a crucial player of the U.S. hard cider industry, addresses the gaps in the literature both on the apple supply side, and on the hard cider demand side. On the apple supply side, fourteen semi-structured interviews demonstrated that neither a long-term formalized contract nor a cooperative model (the two strategic partnership mechanisms used by world's leading industries to manage cider-specific apple production) are appropriate for the current Vermont industry context. On the hard cider demand side, cider makers expressed high interest in working under a geographical indication (GI) label to develop consumers' hard cider literacy and increase demand. This research further indicates that GIs can act as a powerful economic development tool. Introducing hard cider GIs could address current hard cider industry issues on both the supply side and the demand side.

Acknowledgements

United States Department of Agriculture National Institute of Food and Agriculture

VERMONT HARD CIDER COMPANY


Dr. David Conner Florence Becot

Dr. Ann Hazelrigg Sarah Kingsley-Richards Jessica Foster

Sunrise Orchards

Champlain Orchards Northeast IPM Center

Northeast SARE

Vermont Agricultural Experiment Station

